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THE EFFECT OF STRAIN RATE

ON THE CHARACTER OF σ–ε DIAGRAMS

UDC 539Yu. V. Grinyaev, N. V. Chertova, and M. A. Chertov

An equation governing the evolution of elastic strains (stresses) for a given strain rate is obtained
using the field theory of defects under the assumption of uniform defect distribution. Strain diagrams
are constructed by numerical solution of this equation and qualitative analysis of the phase portrait of
the corresponding dynamic system. The effect of strain rate on the mechanical properties of materials
is studied.

The importance of investigation of the effect of strain rate on the mechanical properties of materials is
motivated by the fact that during treatment and utilization, materials deform at different rates, from very low (for
example, in creep) to very high (under shock loading) values. Some experimental results show that the mechanical
properties of materials depend on strain or loading rate. These dependences are known for the hardness, strength,
and yield point of materials [1–3]. In the present paper, the effect of strain rate on the mechanical characteristics
of materials is for the model of a deformable body obtained using the field theory of defects [4–6]. The model is
described by the system of dynamic equations

B(∇ · I) = −P eff , ∇ · α = 0,
(1)

∇× I =
∂α

∂t
, S(∇× α) = −B ∂I

∂t
− σeff ,

∂P eff

∂t
= ∇ · σeff .

Here α and I are the tensors of density and dislocation-flow density, respectively, σeff and P eff are the effective
stresses and impulse, respectively, and B and S are constants. The cross and dot denote vector and scalar products,
respectively. The effective stresses and impulse are determined by the total contribution of external and internal
actions:

σeff = σext + σint, P eff = P ext + P int.

According to [4, 5], the internal stresses and the impulse due to defects in a material can be expressed in terms of
the characteristics of the defect field:

σint = S(α · α− δα2/2) +B(I · I − δI2/2) + ηI; (2)

P int = B(α× I). (3)

Expression (2) contains the term ηI proportional to the plastic-distorsion rate βpl. The defect-flow density (see the
definition in [7])

I = −∂β
pl

∂t
(4)

models viscous stresses (by analogy with the models of a viscous liquid and a viscoelastic body [8]).
Various phenomenological methods for taking into account energy dissipation which lead to relation (2) are

considered in [5, 9]. It should be noted that viscous stresses [8] imply the existence of a dissipative function that
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is quadratic with respect to the plastic-distorsion rate: R = ηijklIijIkl (η is the tensor of viscosity coefficients).
At the same time, the classical theories of plasticity [10] deal with a dissipative function that is homogeneous
with respect to the first power of plastic-strain rate: R = θ

√
I(ij)I(kl) (θ is a constant; the bracketed subscripts

denote symmetrization). The last function describes the energy dissipation caused by nucleation of defects, and
the corresponding friction force determines the limiting shear stress. In this case, it is assumed that energy is
not dissipated during motion of defects. A quadratic dissipation function takes into account the energy dissipated
during motion of defects and ignores the energy of defect nucleation. This is true for many materials in which
microplastic deformation occurs [11].

Koneva and Kozlov [12] analyzed the evolution of dislocation structures and showed that if stresses are close
to the yield point and defects are distributed randomly and do not form spatial structures, the defect distribution
is uniform. In this case, from (1)–(3) we obtain the equation

B
∂I

∂t
+B

(
I · I − δ

2
I2
)

+ ηI + σext = 0. (5)

In the derivation of Eq. (5) governing the dynamics of the tensor of the defect-flow density, it was also assumed that
the constant dislocation density is equal to zero (consequence of the conditions ∇α = 0 and ∂α/∂t = 0). Physically,
this assumption is based on the results of [13], which show that plastic flow occurs owing to deformation defects
formed in a loaded material. With allowance for the definition of the tensor of the defect-flow density (4) and the
relation

βpl = βtot + βel, (6)

Eq. (5) for uniaxial deformation takes the form

B
∂2(Etot − Eel)

∂t2
− B

2

(∂(Etot − Eel)
∂t

)2

+ η
∂(Etot − Eel)

∂t
−MEel = 0, (7)

where M is Young’s modulus, βtot, βpl, and βel are the total, plastic, and elastic distorsions, respectively, and Etot

and Eel are the corresponding strain components.
Given initial conditions, one can use Eq. (7) to analyze strain curves, from which many mechanical charac-

teristics of materials can be determined. According to (7), for a constant strain rate (∂Etot/∂t = V = const), we
obtain

B
∂2

∂t2
E + (η − V B)

∂

∂t
E +

B

2

( ∂
∂t
E
)2

+ME = ηV − B

2
V 2, (8)

where E(0) = 0 and ∂E(0)/∂t = V are the specified initial conditions and E is the longitudinal elastic strain. In
the dimensionless variables T = (η/B)t, a = (B/η2)M , and b = (B/η)V , Eq. (8) becomes

Ë + (1− b)Ė + Ė2/2 + aE = b− b2/2, E(0) = 0, Ė(0) = b (9)

(the dot superimposed denotes differentiation with respect to time).
In addition to the numerical solution of (9), we consider results of qualitative analysis of the phase portrait

of the two-dimensional dynamic system

ẋ = y, ẏ = −(1− b)y − y2/2− ax+ b− b2/2, (10)

which is equivalent to system (9) for x = E and y = Ė. The stationarity condition (ẋ = 0 and ẏ = 0) implies
that the system has a single singular point y0 = 0, x0 = b(1 − b/2)/a. To study the character of this singular
point, it is necessary to determine the eigenvalues of the system. To this end, we write the coefficient matrix

of system (10) linearized in the neighborhood of the singular point:
( 0 1
−a b− 1

)
. Solving the corresponding

characteristic equation, we obtain the eigenvalues

k1,2 = (b− 1)/2±
√

(b− 1)2 − 4a /2. (11)

Let the parameters a and b be positive. In this case, the singular point is not a saddle point. The character of the
singular point is determined by the sign of the real part of the eigenvalues: for b > 1, a point moving along the
trajectory recedes from the singular point, and for b < 1, it approaches the singular point.
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We consider the case of b < 1. If a < 1/4, the character of the singular point changes as b increases from 0
to 1: it is a node for 0 < b < 1 − 2

√
a, a degenerate node for b = 1 − 2

√
a, a focus for 1 − 2

√
a < b < 1, and a

center for b = 1. If a > 1/4, the singular point is a focus for any values of 0 < b < 1. One can show that for a
given initial condition [E(0) = 0 and Ė(0) = b], the phase trajectory remains in the neighborhood of the singular
point for b 6 1 even if nonlinear terms are taken into account: x = E → x0 and y = Ė → y0 as T → ∞. From a
physical viewpoint, this means that the elastic strain does not increase with time (its rate becomes equal to zero)
and the total strain increases as a result of increase in plastic strain since these quantities are related by (6). As a
matter of fact, an yield plateau is attained. The difference between a node and a focus is that in the first case, the
trajectory reaches the limiting value immediately, whereas in the second case, there are exponentially attenuating
oscillations about this value. Figure 1a and b shows characteristic phase trajectories and strain curves obtained for
a node (a = 0.24 and b = 0.02) and Fig. 2 shows those obtained for a focus (a = 0.24 and b = 0.6). The strain
curves are plotted in the coordinates “elastic strain – time” since for a constant strain rate, time is proportional to
the total strain T = Etot/b.

We consider the case of b > 1. The singular point can be either a node or a focus. In both cases, a
point moving along the trajectory recedes from the singular point. However, the type of singular point is of no
importance for b > 1 since the leading part in the second equation (10) is now played by the nonlinear term −y2/2,
which “brings” the trajectory to infinity. In this case, the deformation curve corresponds to brittle behavior of the
material. This case is shown in Fig. 3 (a = 0.25 and b = 10).

If the parameter b is close to unity, the real part of the eigenvalues (11) is small and oscillations about the
singular point increase or attenuate very slowly. For b = 1, the singular point becomes a center; therefore, the
phase trajectory is closed for the given initial conditions (a = 0.24 and b = 1 in Fig. 4). These oscillations are not
observed in real systems. This implies that the model considered does not work in this region of loading rates. The
following can be suggested. The equality b = 1 means that the loading rate V is determined by the relation B/η = τ

[V = ∂Etot/∂t = (B/η)−1, where B and η are constants that characterize the inertia properties and viscosity of
the ensemble of defects]. The quantity τ , which has the dimension of time, can be used as the relaxation time for
the ensemble of defects [14]. The results obtained with the use of the model considered agree with experimental
data for values V � 1/τ and V � 1/τ , which ensure the validity of the initial assumption on uniform distribution
of defects. For low loading rates, the system is able to relax to a state with uniformly distributed defects. For
high loading rates, the initial uniform distribution of defects remains almost undisturbed owing to their inertia. In
other words, in the first case, the defects are able to rearrange according to the external load, whereas in the second
case, the external action has no time to disturb the system of defects. If the characteristic times are of the order of
relaxation time, the uniform defect distribution can be disturbed, which cannot be described by this model.

In summary, the simplest model of a deformable body constructed with the use of the field theory of defects
describes approximately the effect of strain rate on the mechanical properties of a material and allows one to infer
how variation of these properties affects the deformation of solids. As was mentioned previously, the same material
can exhibit plastic or brittle behavior at low and high rates, respectively [1]. Strain curves can be constructed for
various materials deformed at low or high strain rates. An analysis of these curves shows that the coordinates of
the singular point of the phase portrait that determines the yield point depend on strain rate, which also agrees
with available experimental data.
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